Problem 1. Consider a convolutional encoder whose state diagram is given in Figure 7.1.

Figure 7.1: State diagram for a convolutional encoder
(a) Find the code rate

(b) Suppose the data bits (message) are 0100101. Find the corresponding codeword. From the path on the state diagram, we have $\underline{x}=[00111011111000]$
(c) Find the data vector $\underline{\mathbf{b}}$ which gives the codeword $\underline{\mathbf{x}}=[001110111110110011]$

From the path on the state diagram, we have $\underline{b}=[010010001]$

Problem 2. Consider a convolutional encoder whose trellis diagram is given in Figure 7.2.

Figure 7.2: Slate diagram for a convolutional encoder
(a) Find the code rate $\frac{\text { one bit }}{\text { two bits }}=\frac{1}{2}$
(b) Suppose the data bits (message) are $\underline{\mathbf{b}}=[0100101]$. Find the corresponding codeword \underline{x}.

$$
\text { From the blue highligthed path, we have } x=[00111011111000]
$$

(c) Find the data vector $\underline{\mathbf{b}}$ which gives the codeword $\underline{\mathbf{x}}=[0011,10111110]$.

From the green highlighted path, we have $b=[010010]$
Alternatively, because the codeword here is the same as the first 12 bits of the
Alternatively, because the codeword here is the same as the first 12 bits of the codeword in the previous part, we know that the data vector must be the same as the first 6 bits of the data vector from the previous part.
(d) Suppose that we observe $\underline{\mathbf{y}}=[001110000101]$ at the input of the minimum distance decoder. Explain why we can easily find the decoded codeword $\hat{\hat{x}}$ and the decoded message $\underline{\hat{\mathbf{b}}}$ without applying the Viterbi algorithm.
From the purple highligthed path, we see that y itself is a codeword.
So, there is a codeword (y) with distance $=0$ from y.
There con not be any codeword with smaller distance from y than 0 .
So, $\hat{\hat{x}}=y$.
From the purple highligthed path, we can also read $\hat{\hat{b}}=\left[\begin{array}{llll}0 & 1 & 1 & 1\end{array} 0\right]$
(e) Suppose that we observe $\underline{\mathbf{y}}=[0101,0111,1110]$ at the input of the minimum distance decoder. Use Viterbi algorithm to find the decoded codeword $\underline{\underline{\mathbf{x}}}$ and the decoded message $\hat{\mathbf{b}}$. Show your work on Figure 7.3 below.

Figure 7.3: State diagram for a convolutional encoder
Make sure that all the running (cumulative) path metric are shown and the discarded branches are indicated at every steps.

Problem 3. Consider the two signals $s_{1}(t)$ and $s_{2}(t)$ shown in Figure 7.4. Note that V and T_{b} are some positive constants. Your answers should be given in terms of them.

Figure 7.4: Signal set for Question 3
(a) Find the energy in each signal.

$$
\begin{aligned}
& E_{1}=E_{s_{1}}=\int_{-\infty}^{\infty}\left|s_{1}(t)\right|^{2} d t=\int_{0}^{T_{b}} v^{2} d t=v^{2} T_{b} \cdot \\
& E_{2}=E_{s_{2}}=\int_{-\infty}^{\infty}\left|s_{2}(t)\right|^{2} d t=\int_{0}^{T_{b}} 7-3 \\
& V_{0} d t=v^{2} T_{b} .
\end{aligned}
$$

(b) Use the Gram-Schmidt orthogonalization procedure (GSOP) (where the signals are applied in the order given) to find two orthonormal functions $\phi_{1}(t)$ and $\phi_{2}(t)$ that can be used to represent $s_{1}(t)$ and $s_{2}(t)$.
(c) Find the two vectors that represent the two waveforms $s_{1}(t)$ and $s_{2}(t)$ in the new (signal) space based on the orthonormal basis found in the previous part. Draw the corresponding constellation.

$$
\begin{aligned}
& s_{1}(t)=\sqrt{E_{s}} \phi_{1}(t)+O \phi_{2}(t) \Rightarrow \vec{s}^{(1)}=\binom{\sqrt{E_{0}}}{0}=\binom{v \sqrt{T_{b}}}{0} . \\
& s_{2}(t)=0 \phi_{1}(t)+\sqrt{E_{0}} \phi_{2}(t) \Rightarrow \vec{s}^{(2)}=\binom{0}{\sqrt{E_{0}}}=\binom{0}{v \sqrt{T_{b}}} .
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{1}(t)=\Delta_{1}(t) . \\
& \phi_{1}(t)=\frac{D_{1}(t)}{\sqrt{E_{1}}}=\frac{1}{E_{a}} D_{1}(t)= \begin{cases}1 / \sqrt{T_{b}}, & 0 \leqslant t \leqslant \frac{T_{b}}{2} \\
-1 / \sqrt{T_{b}}, & \frac{T_{b}<t<T_{b}}{2} \\
0, & \text { otherwise }\end{cases} \\
& \frac{V}{\sqrt{E_{0}}}=\frac{V}{V \sqrt{T_{6}}}=\frac{1}{\sqrt{T_{6}}} \\
& u_{2}(t)=\lambda_{2}(t)-p r o j_{u_{1}} \lambda_{2}=A_{2}(t)-\frac{\left\langle A_{3}, \Delta_{1}\right\rangle}{\left\langle\Delta_{1}, \Delta_{1}\right\rangle} \Delta_{1}(t)=\lambda_{2}(t) \\
& D_{2}(t)=\frac{u_{L}(t)}{\sqrt{E_{\mu_{L}}}}=\frac{\Delta_{L}(t)}{\sqrt{E_{2}}}=\frac{1}{\sqrt{E_{S}}} S_{L}(t)=\left\{\begin{array}{cc}
1 / \sqrt{T_{b}}, & 0 \leqslant t \leqslant T_{b}, \\
0, & \text { otherwise. }
\end{array}\right. \\
& u_{2}(t)=A_{2}(t)-\operatorname{proj}_{u_{1}} A_{2}=A_{2}(t)-\frac{\left\langle A_{3}, A_{1}\right\rangle}{\left\langle A_{1}, A_{1}\right\rangle} A_{1}(t)=A_{2}(t)
\end{aligned}
$$

Problem 4. Consider the two signals $s_{1}(t)$ and $s_{2}(t)$ shown in Figure 7.5. Note that V, α and T_{b} are some positive constants.

Figure 7.5: Signal set for Question 4
(a) Find the energy in each signal.

$$
\begin{aligned}
& E_{1}=E_{s_{1}}=\int_{-\infty}^{\infty}\left|s_{1}(t)\right|^{2} d t=\int_{0}^{T_{b}} v^{2} d t=v^{2} T_{b} \cdot \\
& E_{2}=E_{s_{2}}=\int_{-\infty}^{\infty}\left|s_{2}(t)\right|^{2} d t=\int_{0}^{T_{b}} v^{2} d t=v^{2} T_{b} .
\end{aligned}
$$

(b) Use the Gram-Schmidt orthogonalization procedure (GSOP) (where the signals are applied in the order given) to find two orthonormal functions $\phi_{1}(t)$ and $\phi_{2}(t)$ that can be used to represent $s_{1}(t)$ and $s_{2}(t)$.

$$
\begin{aligned}
& \frac{V}{\sqrt{E_{s}}}=\frac{V}{V \sqrt{T_{6}}}=\frac{1}{\sqrt{T_{6}}} \\
& \left.u_{2}(t)=D_{2}(t)-\operatorname{proj}_{u_{1}} D_{2}=A_{2}(t)-\underset{\left\langle A_{1}, D_{1}\right\rangle}{\left\langle A_{1}\right\rangle}\right\rangle A_{1}(t)
\end{aligned}
$$

$$
\begin{aligned}
& N_{1}(t)=A_{1}(t) .
\end{aligned}
$$

$$
\begin{aligned}
& u_{2}(t)=A_{2}(t)-p r o j_{u_{1}} A_{2}=A_{2}(t)-\frac{\left\langle A_{3}, A_{1}\right\rangle}{\left\langle A_{1}, A_{1}\right\rangle} A_{1}(t) \\
& \left\langle A_{2}, A_{1}\right\rangle=\int \begin{array}{c}
v^{2} \uparrow{ }_{-} v^{2} T_{3} \\
-\quad d t
\end{array} \\
& =\alpha v^{2}-\left(T_{b}-\alpha\right) v^{2}=2 \alpha v^{2}-T_{t} v^{2} \\
& x_{L}(t)=A_{2}(t)-\frac{2 \alpha \lambda^{2}-T_{b} \lambda^{2} A_{1}(t)=A_{2}(t)-\left(\frac{2 \alpha}{T_{b}}-4\right) A_{1}(t), ~(t)}{\lambda_{b}} \\
& \begin{array}{l}
=A_{2}(t)+\underbrace{\left(1-\frac{3 \alpha}{T_{6}}\right.}_{\text {When } \alpha}) A_{1}(t) \\
\frac{T_{k}}{2} \text {, this term }=0 \text { and } u_{2}(t)=\lambda_{2}(t) .
\end{array} \\
& \text { when } \alpha<\frac{T_{t}}{2} \text {, this team is }>0 \text {. So, } \Delta_{z}(t) \text { will be shifted up. } \\
& \text { When } \alpha\rangle \frac{T L}{2} \text {, this term is <0. So, } A_{2}(t) \text { will be shifted down. } \\
& =\left\{\begin{array}{ll}
V+\left(1-\frac{2 \alpha}{T_{b}}\right) \vee & \text { for } 0<t<\alpha, \\
-V+\left(1-\frac{2 \alpha}{T_{b}}\right) \vee & \text { for } \alpha<t<T_{b}, \\
0 & \text { otherwise. }
\end{array}= \begin{cases}\left(2-\frac{2 \alpha}{T_{b}}\right) \vee & \text { for } 0<t<\alpha, \\
-\frac{2 \alpha}{T_{b}} v & \text { for } \alpha<t<T_{b}, \\
0 & \text { otherwise. }\end{cases} \right. \\
& =2 V \times \begin{cases}1-\frac{\alpha}{T_{6}} & \text { for } 0<t<\alpha, \\
-\frac{\alpha}{T_{6}} & \text { for } \alpha<t<T b_{b} \\
0 & \text { otherwise. }\end{cases} \\
& \text { Note: The shift amount is jot enough to make } \int \mu_{b}=0 \text {. } \\
& {\left[\left(1-\frac{\alpha}{T_{b}}\right) \alpha+\left(-\frac{\alpha}{T_{b}}\right)\left(T_{b}-\alpha\right)=\alpha-\frac{\alpha^{2}}{T_{b}}-\alpha+\frac{\alpha^{2}}{T_{b}}=0 .\right]} \\
& \varepsilon_{m_{2}}=4 v^{2}(\underbrace{\left(1-\frac{\alpha}{T_{b}}\right.})^{2} \alpha+\left(-\frac{\alpha}{T_{b}}\right)^{2}\left(T_{b}-\alpha\right))=4 v^{2}\left(\alpha-\frac{2 \alpha^{2}}{T_{b}}+\frac{\alpha^{3}}{T_{a}^{2}}+\frac{\alpha}{T_{b}}-\frac{\alpha^{3}}{T_{a}^{2}}\right) \\
& 1-\frac{2 \alpha}{T_{6}}+\frac{\alpha^{2}}{T_{6}^{2}} \\
& =4 v^{2} \alpha\left(1-\frac{\alpha}{T_{b}}\right) \quad \Rightarrow \sqrt{\varepsilon_{w_{2}}}=2 v \sqrt{\alpha\left(1-\frac{\alpha}{T_{b}}\right)} \\
& \Phi_{2}(t)=\frac{\mu_{L}(t)}{\sqrt{E_{\alpha_{c}}}}=\frac{2 \alpha}{\Delta \alpha \sqrt{\alpha\left(1-\frac{\alpha}{T_{b}}\right)}} \begin{cases}1-\frac{\alpha}{T_{b}} & \text { for } 0<t<\alpha, \\
-\frac{\alpha}{T_{6}} & \text { for } \alpha<t<T b_{b} \\
0 & \text { otherwise. }\end{cases} \\
& =\frac{1}{\alpha\left(1-\frac{\alpha}{T_{b}}\right)} \times \begin{cases}1-\frac{\alpha}{T_{6}} & \text { for } 0<t<\alpha, \\
-\frac{\alpha}{T_{6}} & \text { for } \alpha<t<T b, \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

(c) Plot $\phi_{1}(t)$ and $\phi_{2}(t)$ when $\alpha=\frac{T_{b}}{4} . \Rightarrow \frac{1}{\sqrt{\alpha\left(1-\frac{\alpha}{T_{b}}\right)}}=\frac{1}{\sqrt{\frac{T_{4}}{4}\left(1-\frac{1}{4}\right)}}=\frac{4}{\sqrt{3 T_{b}}}$

$$
\begin{aligned}
& \phi_{2}(t)=\frac{4}{\sqrt{3 T_{6}}} \times\left\{\begin{array}{ll}
3 / 4 & \text { for } 0<t<\frac{T_{6}}{4} \\
-1 / 4 & \text { for } \frac{T_{b}}{4}<t<T_{6} \\
0 & \text { otherwise }
\end{array}= \begin{cases}\sqrt{3 / T_{6}}, & \text { for } 0<t<\frac{T b}{4}, \\
-\frac{1}{\sqrt{3} T_{6}}, & \text { for } \frac{T_{5}}{4}<t<T_{b}, \\
0, & \text { otherwise. }\end{cases} \right.
\end{aligned}
$$

(d) Find the two vectors $\boldsymbol{s}^{(1)}$ and $\boldsymbol{s}^{(2)}$ that represent the two waveforms $s_{1}(t)$ and $s_{2}(t)$ in the new (signal) space based on the orthonormal basis found in the previous part.

$$
\begin{aligned}
\partial_{1}(t) & =\sqrt{E_{1}} \varnothing_{1}(t)=\sqrt{E_{0}} \varnothing_{1}(t)=v \sqrt{T_{b}} \varnothing_{1}(t) \Rightarrow \vec{A}^{(1)}=\binom{v \sqrt{T_{b}}}{0}=\binom{\sqrt{E_{b}}}{0} \\
A_{2}(t) & =u_{c}(t)-\left(1-2 \frac{\alpha}{T_{b}}\right) A_{1}=\sqrt{\varepsilon_{A_{2}}} \varnothing_{2}(t)-\left(1-2 \frac{\alpha}{T_{b}}\right) \sqrt{\varepsilon} \varnothing_{1}(t) \\
& =2 v \sqrt{\alpha\left(1-\frac{\alpha}{T_{b}}\right) \varnothing_{2}(t)-\left(1-2 \frac{\alpha}{T_{b}}\right) v \sqrt{T_{b}} \varnothing_{1}(t) .} \\
& \Rightarrow \vec{A}^{(2)}=\binom{-\left(1-2 \frac{\alpha}{T_{b}}\right)}{2\left(\frac{\alpha}{T_{b}}\left(1-\frac{\alpha}{T_{b}}\right)\right.} \times \sqrt{T_{b}}=\sqrt{E_{b}}\binom{2 r-1}{2 \sqrt{r(1-r)}} \text { where } r=\frac{\alpha}{T_{b}}
\end{aligned}
$$

(e) Draw the corresponding constellation when $\alpha=\frac{T_{b}}{4}$.

When $\alpha=\frac{T_{6}}{4}, A_{2}(t)=2 v \sqrt{\frac{T_{6}}{4}\left(\frac{3}{4}\right)} \sigma_{2}(t)-\left(1-\frac{1}{2}\right) v \sqrt{T_{6}} \varnothing_{1}(t)=\frac{\sqrt{3}}{2} V \sqrt{T_{6}} \varnothing_{2}(t)-\frac{1}{2} v \sqrt{T_{6}} \otimes_{1}(t)$

$-\frac{1}{2} v \sqrt{T_{6}}$
(f) Draw $\boldsymbol{s}^{(2)}$ when $\alpha=\frac{k}{10} T_{b}$ where $k=1,2, \ldots, 9$.

Note that

$$
\begin{aligned}
& (2 r-1)^{2}+(2 \sqrt{r(1-r)})^{2} \\
& =4 r^{2}-4 r+1+4 r-4 r^{2}=1 .
\end{aligned}
$$

$$
r=\frac{\alpha}{T_{b}}=\frac{k}{10}
$$

Problem 5. In a ternary signaling scheme, the message S is randomly selected from the alphabet set $\mathcal{S}=\{-1,1,4\}$ with $p_{1}=P[S=-1]=0.41, p_{2}=P[S=1]=0.08$ and $p_{3}=P[S=4]=0.51$. Find the average signal energy E_{s}.

$$
\begin{aligned}
& \begin{array}{l}
\text { There are three possible } \vec{D} \\
\text { Here, } M=3 \text { and } K=\vec{r}^{(12)} \vec{N}^{(2)} \vec{\pi}^{(3)} \\
, \vec{r} \text { is one-dimensional (a scalar) }
\end{array} \\
& \text { So, } E_{j}=\left|0^{(j)}\right|^{2} \text { and } E_{s}=\sum_{j=1}^{3} p_{j}\left|s^{(j)}\right|^{2} \\
& =0.41 \times(-1)^{2}+0.08 \times(1)^{2}+0.51 \times 4^{2}=8.65
\end{aligned}
$$

Problem 6. Consider a ternary constellation. Assume that the three vectors are equiprobable.
(a) Suppose the three vectors are

$$
\boldsymbol{s}^{(1)}=\binom{0}{0}, \boldsymbol{s}^{(2)}=\binom{3}{0}, \text { and } \boldsymbol{s}^{(3)}=\binom{3}{3}
$$

Find the corresponding average energy per symbol.

$$
E_{3}=\frac{1}{3}\left(0^{2}+3^{2}+3^{2}+3^{2}\right)=9
$$

(b) Suppose we can shift the above constellation to other location; that is, suppose that the three vectors in the constellation are

$$
\boldsymbol{s}^{(1)}=\binom{0-a_{1}}{0-a_{2}}, \boldsymbol{s}^{(2)}=\binom{3-a_{1}}{0-a_{2}}, \text { and } \boldsymbol{s}^{(3)}=\binom{3-a_{1}}{3-a_{2}}
$$

Find a_{1} and a_{2} such that corresponding average energy per symbol is minimum.

Remark for Q6
In general, we have to minimize terms of the form $\sum_{j=1}^{M} p_{j}\left(\alpha_{j}-a\right)^{2}$.
Method 1:

$$
\begin{aligned}
\sum_{j=1}^{M} p_{j}\left(\alpha_{j}-a\right)^{2} & =\mathbb{E}\left[(x-a)^{2}\right]=\mathbb{E}[(x \underbrace{-\mathbb{E} x+\mathbb{E} x}_{0}-a)^{2}] \\
& =\operatorname{Vor} x+2 \underbrace{\mathbb{E}[(x-\mathbb{E} x)}_{0}]\left(\mathbb{E x - a)}+(\mathbb{E} x-a)^{2}\right. \\
& =\operatorname{Var} x+\underbrace{(\mathbb{E x - a})^{2}}_{\uparrow}
\end{aligned}
$$

This is the only term that depends on a. Minimums value of 0 is achieved when $a=\mathbb{E X}$.

$$
\text { Method 2: } \sum_{j=1}^{M} p_{j}\left(x_{j}-a\right)^{2}=\sum_{j=1}^{m} p_{j}\left(x_{j}^{2}-2 a a_{j}+a^{2}\right)=a^{2}-2 a \mathbb{E} x+\mathbb{E}\left[x^{2}\right]
$$

As a function of " a ", thin is a parabola

$$
a=\mathbb{E} E X .
$$

set $\frac{d}{d a}()=0$. Then solve foo a.
Method 3: We con toy to find the derivative right from the beginning:

$$
\frac{d}{d a} \sum_{j=1}^{M} p_{j}\left(x_{j}-a\right)^{2}=-\sum_{j=1}^{M} p_{j} 2\left(x_{j}-a\right)=-2(\mathbb{E} X-a)
$$

The derivative above is 0 when $a=\mathbb{E X}$. < when $a<\mathbb{E X}$, the slope is <0 when $a>I E X$, the slope is >0

So, the minimum value occurs when $a=\mathbb{E} X=\sum_{i} p_{i} x_{i}$

Problem 7. Prove the following facts with the help of Fourier transform. (Hint: inner product in the frequency domain, Parseval's theorem)
(a) The energy of $p(t)=g(t) \cos \left(2 \pi f_{c} t+\phi\right)$ is $E_{g} / 2$.
(b) $g(t) \cos \left(2 \pi f_{c} t\right)$ and $-g(t) \sin \left(2 \pi f_{c} t\right)$ are orthogonal.

Is there any condition (s) on $g(t)$ for this technique to work?
(a)

$$
\begin{aligned}
& p(t)=g(t) \cos \left(2 \pi f_{c} t+\phi\right)=g \frac{g(t)}{2}\left(e^{j\left(2 \pi f_{c} t+\phi\right)}+e^{-j\left(2 \pi f_{c} t+\phi\right)}\right) \\
& L_{\cos A}=\frac{e^{j A}+e^{-j A}}{2} \\
& =g \frac{g(t)}{2} e^{j \phi} e^{j 2 \pi f_{c} t}+\frac{g(t)}{2} e^{-j \phi} e^{-j 2 \pi f_{c} t} \\
& \downarrow^{5} \\
& p(f)=\frac{e^{j \phi}}{2} \sigma\left(f-f_{c}\right)+\frac{e^{-j \phi}}{2} \sigma\left(f+f_{c}\right) \\
& E_{p}=\langle p(t), p(t)\rangle=\langle p(f), p(f)\rangle=\int_{-\infty}^{2} p(f) p^{*}(f) d f \\
& =\int_{-\infty}^{\infty}(\underbrace{\frac{e^{j \phi}}{2} \sigma\left(f-f_{c}\right.}_{A})+\underbrace{\frac{e^{-j \phi}}{2} \sigma\left(f+f_{c}\right)}_{B})(\underbrace{\left.\frac{e^{-j \phi} G^{*}\left(f-f_{c}\right.}{2}\right)}_{C}+\underbrace{\frac{e^{j \phi}}{2} G^{*}\left(f+f_{c}\right)}_{D}) d f \\
& =\int_{-\infty}^{\infty}(A+B)(C+D) d f=\int_{-\infty}^{\infty} A C d f+\int_{-\infty}^{\infty} A D d f+\int_{-\infty}^{\infty} B C d f+\int_{-\infty}^{\infty} B D d f \\
& \text { Now, note that } \\
& A C=\frac{1}{4}\left|C\left(f-f_{c}\right)\right|^{2} \\
& B D=\frac{1}{4}\left|C\left(f-1 f_{c}\right)\right|^{2} \\
& \text { suppose we assume that } G(f) \text { is band-limited to } \pm B \text {, ide., } \\
& G(f)=0 \text { when }|f|>B . \\
& \text { Then, if } f_{c}>B \text {, } \\
& \text { the nonzero parts of } d\left(f-f_{c} \bar{f} \text {-and } G\left(f+f_{c}\right)\right. \text { do not overlap. } \\
& \text { Therefore, } \left.\begin{array}{rl}
& B C \\
A D & \equiv 0
\end{array}\right\} \text { across all } f \text {. }
\end{aligned}
$$

So, $E_{p}=\int_{-\infty}^{\infty} \frac{1}{4}\left|G\left(f-f_{0}\right)\right|^{2} d f+0+0+\int_{-\infty}^{\infty} \frac{1}{4}\left|B\left(f_{+}+f_{0}\right)\right|^{2} d f$

$$
\ln _{\infty}^{-\infty}+f_{c}
$$

This formula is valid when $G(f)=0$ for $|f| \geqslant f_{c}$.
(b)

$$
\begin{aligned}
& x(t)=g(t) \cos \left(2 \pi f_{c} t\right) \xrightarrow{y} x(f)=\frac{1}{2}\left(\sim_{G\left(f-f_{c}\right.}\right)+\underset{G\left(f+f_{c}\right)}{A} \\
& y(t)=-g(t) \underbrace{\sin \left(2 \pi f_{c} t\right)}_{n} \xrightarrow{\xi} Y^{*}(f)=+\frac{1}{2 j}(\underbrace{G^{*}\left(f-f_{c}\right)}_{C}-\underbrace{G^{*}\left(f+f_{c}\right)}_{D}) \\
& \frac{1}{2 j}\left(e^{j 2 \pi f_{c} t}-e^{-j 2 \pi f_{c} t}\right) \\
& \langle x, y\rangle=\langle x, y\rangle=\int_{-\infty}^{\infty} x(f) y^{*}(f) d f=\frac{1}{4 j} \int^{(A+B)(C-D) d f} \\
& { }_{-\infty}^{\infty} \quad \infty_{-\infty}^{-\infty}=A C-A D+B C-B D \\
& \begin{array}{r}
=\frac{1}{4 j} \int_{-\infty}\left|G\left(f-x_{c}\right)\right|^{2} d f-\frac{1}{4 j} \int_{-\infty}\left|G\left(f+x_{c}\right)\right|^{2} d f+0+0 \\
=0 \quad G\left(f-f_{c}\right) \text { and }
\end{array} \\
& =0
\end{aligned}
$$

Assumption: $d(f)$ is bendlimited

$$
G(f)=0 \text { for } f>f_{c}, f<-f_{c}
$$

